Mediator Decay through Mixing with Degenerate Spectrum

Shigeki Matsumoto (Kavli IPMU, U. Tokyo)

Collaborators: Ayuki Kamada, Takumi Kuwahara, Yu Watanabe, Yuki Watanabe (arXiv:2404.06793)

✓ Light mediator is often predicted in the dark sector scenario.

- The mediator weakly interacts with the SM particles in general, A small coupling controls the strength of such an interaction,
- However, the interaction could be enhanced if the mediator degenerates with an SM state with the same quantum number.
- ✓ We discuss how the influence of the degeneracy is properly described, focusing on the lifetime of the mediator particle.

Dark sector scenario

A scenario addressing big questions in PP (DM, v mass, BAU, etc.) < EW scale

Weak Connection

 Via higher-dim, operator (Or very heavy particles),
 Hidden valley scenario,
 Via light mediator particle

Standard Model

Origin of ✓ the dark matter, ✓ the neutrino masses/mixings, ✓ the baryon asymmetry of U,, etc.

Dark sector

Various mediator particles are now being considered in the literature, To guarantee weak interactions among the light mediator particle & SM particles, the mediator should be singlet under the SM gauge group, → Dark scalar, Dark photon, Neutral fermion mediators, etc, Because the mediator particle is light and very weakly interacting, it has implications for collider physics (LLP) and cosmology (light relics), A key physical observable for the implications is its width (lifetime)!

Let us consider such a case using the dark photon mediator scenario! Starting Lagrangian is

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm DS} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} \overline{m}_{A'}^2 A'^2_\mu + \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}$$

The mediator mass term is assumed to be from a Higgs mechanism, The dark photon interacts with the SM particles through the EM currents when its mass is smaller enough than the scale of EWSB,

✓ Calculating its width (lifetime) @ LO (ε <<])

Dark photon degenerated with an SM state

Interaction between the dark photon and SM particles is enhanced when it degenerates with an SM state (V) with the same quantum #.

 \checkmark Is it possible to enhance the interaction significantly? F.g., at here.The mixing term (c.e.)

The mixing term (∝ ε) contributes to an off-diagonal element of the mass matrix between A' and V. ↓ Diagonalization

 $\widetilde{A}' = A' \cos\theta + V \sin\theta$

The decay width of Ă' is, at most, that of the degenerate particle V, ✓ Is the interaction enhanced significantly when the dark photon degenerates with an SM state having a large decay width? — E.g., at here,

As an SM state with a large decay width means a broad resonance, namely far from a quasi-particle, the perturbative cal, must work, Let us consider it more carefully!

$$\mathcal{L}agrangian \ for \ A, \ A' \ and \ V$$

$$\mathcal{L} = -\frac{1}{4}\bar{F}_{\mu\nu}\bar{F}^{\mu\nu} - \frac{1}{4}\bar{F}'_{\mu\nu}\bar{F}'^{\mu\nu} - \frac{1}{4}\bar{V}_{\mu\nu}\bar{V}^{\mu\nu} + \frac{\epsilon}{2}\bar{F}_{\mu\nu}\bar{F}'^{\mu\nu} + \frac{\epsilon_V}{2}\bar{F}_{\mu\nu}\bar{V}^{\mu\nu} + \frac{\epsilon_V'}{2}\bar{F}'_{\mu\nu}\bar{V}^{\mu\nu} + \frac{1}{2}\bar{m}^2_{A'}\bar{A}'_{\mu}\bar{A}'^{\mu} + \frac{1}{2}\bar{m}^2_{V}\bar{V}_{\mu}\bar{V}^{\mu} + e\bar{A}_{\mu}J^{\mu}_{A} + g_V\bar{V}_{\mu}J^{\mu}_{V} + g_{A'}\bar{A}'_{\mu}J^{\mu}_{A'} + \cdots$$

$$Diagonalization \qquad V = Z, \ \rho, \ Ps, \ etc.$$

$$\begin{pmatrix} \bar{A}'_{\mu} \\ \bar{V}_{\mu} \\ \bar{A}_{\mu} \end{pmatrix} = C_{kin} \begin{pmatrix} \tilde{A}'_{\mu} \\ \tilde{V}_{\mu} \\ \bar{A}_{\mu} \end{pmatrix} = C_{kin} \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A'_{\mu} \\ V_{\mu} \\ A_{\mu} \end{pmatrix} \equiv C \begin{pmatrix} A'_{\mu} \\ V_{\mu} \\ A_{\mu} \end{pmatrix}$$

$$\mathcal{L} \supset \frac{1}{2}\bar{m}^2_V (\tilde{A}'_{\mu} \quad \tilde{V}_{\mu}) \begin{pmatrix} \eta^2 + \delta^2 & -\eta \\ -\eta & 1 \end{pmatrix} \begin{pmatrix} \tilde{A}'_{\mu} \\ \tilde{V}'_{\mu} \end{pmatrix} = \frac{1}{2} (A'_{\mu} \quad V_{\mu}) \begin{pmatrix} m^2_{A'} & 0 \\ 0 & m^2_V \end{pmatrix} \begin{pmatrix} A'_{\mu} \\ V_{\mu} \end{pmatrix}$$

' []

 $\eta = \eta(\varepsilon, \varepsilon_V, \varepsilon'_V), \delta \propto \bar{m}_A^2 / \bar{m}_V^2$

 The vector particles A' and V never
 A' degenerate in mass in a complete way. (The so-called avoided level crossing,) Discontinuity exists at δ close to 1.

2 familiar ways to calculate the A's lifetime

Suppose the following interactions: $\mathcal{L}_{int} = g_V \overline{V}_\mu \overline{f} \gamma^\mu f + e Q_f \overline{A}_\mu \overline{f} \gamma^\mu f$

5/8

✓ "Classical" method:

Diagonalizing Kinetic and mass terms and calculating the width, $\mathcal{L}_{int} = (C_{\overline{V}A'} g_V + C_{\overline{A}A'} eQ_f) A'_{\mu} \overline{f} \gamma^{\mu} f + (C_{\overline{V}V} g_V + C_{\overline{A}V} eQ_f) V_{\mu} \overline{f} \gamma^{\mu} f + \cdots$

$$\Gamma_{\rm cl}(A' \to f\bar{f}) = \frac{m_{A'}}{16\pi} \frac{4}{3} (C_{\bar{V}A'} g_V + C_{\bar{A}A'} eQ_f)^2 \xrightarrow{\delta \to 1} \frac{\delta \to 1}{w/ \text{ fixed } \varepsilon <<1} \xrightarrow{m_{A'}} \frac{2}{3} g_V^2 \simeq \Gamma_{\rm cl}(V \to f\bar{f})$$

\checkmark "ε-insertion" method Diagonalizing kinetic terms and calculating the width with a perturbative ε.

$$\Gamma_{\rm sl}(A' \to f\bar{f}) = \frac{M_{\tilde{A}'}}{16\pi^2} \frac{4}{3} \left| \overline{g}_{f}^{\tilde{A}'} + \overline{g}_{f}^{\tilde{V}} \frac{-\overline{m}_{V}^{2}\eta}{M_{\tilde{A}'}^{2} - \overline{m}_{V}^{2} + i\overline{m}_{V}\overline{\Gamma}_{\tilde{V}}} \right|^{2} \left| \begin{array}{c} \overline{g}_{f}^{V} \equiv (C_{\rm kin})\overline{v}\widetilde{v}\ g_{V} + (C_{\rm kin})\overline{A}\widetilde{v}\ eQ_{f} \\ \overline{g}_{f}^{\tilde{A}'} \equiv (C_{\rm kin})\overline{v}\widetilde{A}'\ g_{V} + (C_{\rm kin})\overline{A}\widetilde{A}'\ eQ_{f} \\ M_{\tilde{A}'}^{2} = \overline{m}_{V}^{2}(\delta^{2} + \eta^{2}), \\ \overline{\Gamma}_{V} = \frac{\overline{m}_{V}}{16\pi} \frac{4}{3}g_{V}^{2}. \\ \end{array} \right|^{2} \left| \begin{array}{c} \overline{\delta} \neq \mathbf{1} \\ \mathbf{\delta} \neq \mathbf{1} \\ \mathbf{w}/ \text{ fixed } \varepsilon << \mathbf{1} \end{array} \right|_{\mathbf{v}} \left| \begin{array}{c} \overline{\delta} \neq \mathbf{1} \\ \Gamma_{\rm sl}(A' \to f\bar{f}) \propto \varepsilon^{2} \end{array} \right|^{2} \right|^{2} \left| \begin{array}{c} \overline{\delta} \neq \mathbf{1} \\ \overline{\delta} \neq \mathbf{1} \\ \mathbf{w}/ \text{ fixed } \varepsilon << \mathbf{1} \end{array} \right|^{2} \left| \begin{array}{c} \overline{\delta} = \mathbf{1} \\ \overline{\delta$$

6/8

✓ When $|\eta| \gtrsim \overline{\Gamma}_V / \overline{m}_V$, then $s_{\text{pole}}^{\pm} \simeq m_V^2 (1 + \Pi')$ The poles degenerate w/ $O(\eta^0)$ imaginary parts ~ Classical method, ✓ When $|\eta| \lesssim \overline{\Gamma}_V / \overline{m}_V$, then $s_{\text{pole}}^{\pm} \simeq m_V^2 (1 + \Pi' \pm \Pi')$ One has $O(\eta^0)$, and another has $O(\eta^2)$ widths ~ ε -insertion" method.

 $V = Z \ case$ $\overline{m}_{V} = 91.2 \ GeV$ $\overline{\Gamma}_{V} = 2.50 \ GeV$ From SM theory, $\eta = \frac{\epsilon \tan \theta_{W}}{(1 - \epsilon^{2}/\cos^{2} \theta_{W})^{1/2}}$ $\delta = \frac{\overline{m}_{A'}/\overline{m}_{V}}{(1 - \epsilon^{2}/\cos^{2} \theta_{W})^{1/2}}$

7/8

 $V = Z \ case$ $\overline{m}_{V} = 91.2 \ GeV$ $\overline{\Gamma}_{V} = 2.50 \ GeV$ From SM theory,

$$\eta = \frac{\epsilon \tan \theta_W}{\left(1 - \epsilon^2 / \cos^2 \theta_W\right)^{1/2}}$$
$$\delta = \frac{\overline{m}_{A'} / \overline{m}_V}{\left(1 - \epsilon^2 / \cos^2 \theta_W\right)^{1/2}}$$

 $V = \rho \ case$ $\overline{m}_{V} = 775 \ MeV$ $\overline{\Gamma}_{V} = 147 \ MeV$ From HLS theory,

$$\eta = \frac{\epsilon_{\text{eff}}}{(1 - \epsilon_{\text{eff}}^2)^{1/2}} \quad \delta = \frac{\overline{m}_{A'}/\overline{m}_{V}}{(1 - \epsilon_{\text{eff}}^2)^{1/2}}$$
$$\epsilon_{\text{eff}} = \frac{\epsilon}{(1 - \epsilon^2)^{1/2}} \frac{e/g}{(1 - e^2/g^2)^{1/2}}$$

 $V = (\mu^{-}\mu^{+}) case$ $\overline{m}_{V} = 211 MeV$ $\overline{\Gamma}_{V} = 366 \mu eV$ From NRL theory,

- We discussed how the decay width of the mediator particle (dark photon) should be computed when it degenerates with an SM state,
- When η > Γ_V/m_V, the level mixing exists, and the width is obtained by the "classical" method, with Γ_V and m_V being the mass and width the SM state originally had before interacting with the mediator.
- ✓ When $\eta < \Gamma_V/m_V$, no level mixing exists, and the width is calculated by the "ε-insertion" method, where ε is treated perturbatively.
- \checkmark In other words, the width of the mediator is given by min[Γ_{cL} , Γ_{el}].
- The method developed here is, of course, applied to other V cases.

Summary

Mesons	Mass (MeV)	$\operatorname{Width}\left(\operatorname{MeV}\right)$	Branching ratio to e^-e^+	Critical mixing $\epsilon_{\rm cr}$
$\rho(770)$	775.26	149.1	4.72×10^{-5}	9.53×10^{-1}
ω (782)	782.66	8.68	7.38×10^{-5}	5.26×10^{-1}
$\phi(1020)$	1019.461	4.249	2.979×10^{-4}	1.81×10^{-1}
$J/\psi\left(1S ight)$	3090.9	9.26×10^{-2}	5.971×10^{-2}	1.10×10^{-3}
$\psi\left(2S\right)$	3686	2.94×10^{-1}	7.93×10^{-3}	4.95×10^{-3}
$\psi(3770)$	3773.7	27.2	9.6×10^{-6}	8.04×10^{-1}
$\psi(4040)$	4039	80	1.07×10^{-5}	9.05×10^{-1}
$\psi(4160)$	4191	70	6.9×10^{-6}	9.25×10^{-1}
$\Upsilon(1S)$	9460	5.4×10^{-2}	2.38×10^{-2}	7.64×10^{-4}
$\Upsilon(2S)$	10023	3.198×10^{-2}	1.91×10^{-2}	6.38×10^{-4}
$\Upsilon(3S)$	10355	2.032×10^{-2}	2.18×10^{-2}	4.68×10^{-4}
$\Upsilon(4S)$	10579.4	20.5	1.57×10^{-5}	4.81×10^{-1}
$\Upsilon(10860)$	10885.2	37	8.3×10^{-6}	7.67×10^{-1}
$\Upsilon(11020)$	11000	24	5.4×10^{-6}	7.04×10^{-1}

The method developed here is, of course, applied to other V cases.

- We discussed how the decay width of the mediator particle (dark photon) should be computed when it degenerates with an SM state,
- ✓ When $\eta > \Gamma_V/m_V$, the level mixing exists, and the width is obtained by the "classical" method, with Γ_V and m_V being the mass and width the SM state originally had before interacting with the mediator.
- ✓ When $\eta < \Gamma_v / m_v$, no level mixing exists, and the width is calculated by the "ε-insertion" method, where ε is treated perturbatively.
- \checkmark In other words, the width of the mediator is given by min[Γ_{cL} , Γ_{el}].
- The method developed here is, of course, applied to other V cases.
- The method is also applied to another particle degenerating with the other particle, such as other mediators degenerating with an SM sate and right-handed neutrinos in the resonant leptogenesis,